Dr. Rajendra Tandon was one of the foremost cardiologists in India, who contributed significantly in the fields of pediatric cardiology as well as preventive cardiology. He established the discipline of pediatric cardiology in India and is considered as the father of pediatric cardiology in India. He received his cardiology training in India and at Harvard Medical School USA. Later he subsequently joined the faculty of the Cardiology Department at the All India Institute of Medical Science, New Delhi, and retired as the Head of the Department in 1991. Since then he was working as a Consultant of Cardiology at the Sirram Bharita Institute of Science & Research, Centre for Health Care.

Honors bestowed upon Dr. Tandon include several visiting professors in various Universities and several lectures in the international conferences. Professor Tandon was one of the celebrated teachers among the current generations of medical practitioners, especially physicians and cardiologists. He was famous for his analytical bedside teaching which stimulated the student community to go ahead for further reading. He was well known for his cryptic explanations of the hemodynamic of sounds and murmurs.

Dr. Tandon has authored several scientific publications and books to his credit and has received many awards and honors. He had been very active in the field of cardiologists. He was famous for his analytical bedside teaching which stimulated the student community to go ahead for further reading. He was well known for his cryptic explanations of the hemodynamic of sounds and murmurs.

His untimely death on 26 February 2014 has left a huge void in Indian Cardiology.

Abstract

India is undergoing rapid nutritional transition, resulting in excess consumption of calories, saturated fats, trans fatty acids, simple sugars, salt and low intake of fiber. Such dietary transition and a sedentary lifestyle have led to an increase in obesity and diet-related non-communicable diseases (type 2 diabetes mellitus [T2DM], cardiovascular disease [CVD], etc.) predominately in urban, but also in rural areas. In comparison with the previous guidelines, these consensus dietary guidelines include reduction in the intake of carbohydrates, preferential intake of complex carbohydrates and low glycemic index foods, higher intake of fiber, lower intake of saturated fats, reduction in trans fatty acids, slightly higher protein intake, lower intake of salt, and restricted intake of sugar. The lipid lowering functional foods can also be included in daily diet. While these guidelines are applicable to Asian Indians in any geographical setting, they are particularly applicable to those residing in urban and in semi-urban areas. Proper application of these guidelines will help curb the rising “epidemics” of obesity, the metabolic syndrome, dyslipidemia, hypertension and CVD in Asian Indians.

Key Words

- Dietary guidelines
- Dyslipidemia
- Asian Indians
- Cardiovascular disease

Introduction

Asian Indians (people of Indian origin living in India or living in other countries) have become more affluent, urbanized and mechanized during the previous decade. Hectic lifestyle and easy availability of convenience foods has led to irregular meals and frequent snacking on energy-dense fast foods including ready-to-use gravies and soups, packaged salty snacks, readymade cookies, and commercial fast-foods rather than traditional home-cooked food. Further, consumption of animal foods, sweetened carbonated drinks, sugar and sweeteners has also increased. In addition, traditional Indian energy-dense foods continue to be consumed. Overall, this nutritional transition, has resulted in high consumption of calories, saturated fats, trans fatty acids (TFAs), simple sugars, salt, along with low intake of fiber, monounsaturated fatty acids (MUFAs) and n-3 polyunsaturated fatty acids (PUFAs). The pattern of nutritional intake in Asian Indians is diverse and influenced by several factors including socio-economic status, region, religion, and easy availability of certain food groups. It may be hypothesized that the excess dietary fat is deposited in the metabolically active intra-abdominal and truncal subcutaneous adipose tissues, which are in excess nutritional value and preparation time.
in Asian Indians and play an important role in inducing insulin resistance. The presence of hyperinsulinemia and dyslipidemia, along with obesity and an imbalanced dietary pattern, in Asian Indians is of concern and predisposes them to a high risk of T2DM, the metabolic syndrome, and coronary artery disease. Some previous studies also indicated that a high intake of energy, mainly constituting carbohydrates, was responsible for postprandial hyperinsulinemia and dyslipidemia in Asian Indians. Dietary modification is a powerful non-pharmacological strategy for improving blood lipids. The goals of nutrition management are to maintain or improve quality of life, nutritional and physiological health, and to prevent and treat dyslipidemia and associated co-morbid conditions. In general, nutrition advice for people with dyslipidemia is the same as that for all Asian Indians. For individuals with dyslipidemia, attention to food portions and weight management combined with physical activity may help improve the condition. Nutrition in all forms of dyslipidemia management should be individualized.

Search strategy

The literature search has been carried out using the terms, obesity, dietary guidelines, dyslipidemia, nutrition, international dietary guidelines and developing countries, in the medical search database PubMed (National Library of Medicine, Bethesda, MD) from 1966 to June 2013. A manual search of the relevant quoted references was also carried out from the retrieved articles.

Data have also been taken from nutritional surveys in different regions and states in India. Further, individuals with dyslipidemia, obesity, and from India, has shown the relevance of GI in the Indian diet. Caucasians. It has been suggested that an imbalance in the ratio of long-chain n-3 PUFA in plasma and cellular membranes, which have a high LA to ALA ratio, predisposes them to a high risk of T2DM, the metabolic syndrome, and coronary artery disease.

Energy

Energy intake should be limited to the amount of energy needed to maintain (or obtain) a healthy weight, i.e., a BMI of 23 kg/m². It should be enough to support energy needs, yet needed to maintain (or obtain) a healthy weight, i.e., a BMI of 23 kg/m². It should be enough to support energy needs, yet

Table 1: Calculation of ideal body weight

<table>
<thead>
<tr>
<th>Build</th>
<th>Women</th>
<th>Men</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>100 lbs (45.5 kg) for first 5 ft (152 cm) height, plus 5 lb (2.3 kg) for each additional inch</td>
<td>100 lbs (45 kg) for first 5 ft (152 cm) height, plus 6 lb (2.7 kg) for each additional inch</td>
</tr>
<tr>
<td>Small</td>
<td>Subtract 10%</td>
<td>Subtract 10%</td>
</tr>
<tr>
<td>Large</td>
<td>Add 10%</td>
<td>Add 10%</td>
</tr>
</tbody>
</table>

Table 2: Calculation of energy requirement

<table>
<thead>
<tr>
<th>Activity</th>
<th>Energy requirement (kcal/Kg IBW-day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sedentary</td>
<td>20 – 25 kcal/day</td>
</tr>
<tr>
<td>Moderate</td>
<td>30 – 35 kcal/day</td>
</tr>
<tr>
<td>Heavy</td>
<td>40 kcal/day</td>
</tr>
</tbody>
</table>

Carbohydrates and Fiber

Recommendations

1. The daily carbohydrate intake should be approximately 50–60% of energy intake. For example, in an 1800 and 2000 calorie diet, the carbohydrate intake for a sedentary to moderately active individual should be 225–270 g/day and 250–300 g/day, respectively.

2. The primary source of complex carbohydrates in the diet should be cereals (whole wheat, brown rice, etc.), millets [pearl millet (bajra), finger millet (ragi), great millet (kowari)], pulses [red gram (tur dal), green gram (sabut moong), etc.] and legumes [soya, horse gram (kali gram)]. Complex carbohydrates should be preferred over refined carbohydrates and its products, e.g., whole grain bread over white (maida) bread.

3. Low GI carbohydrate foods, e.g., oats (lau), unpolished rice, parboiled rice, whole pulses, beans (fali) and legumes (sabut anaz), some whole fruits like guava, apple, etc. should be preferred. High GI foods [refined flour, refined sugar (refined white sugar), etc.] should be consumed in moderation.

4. The daily total carbohydrate intake in daily diet should be 25–40 g/day [e.g., 100 g of apple (1 small apple) gives 1.0 g of fiber; 100 g of whole wheat flour gives 1.9 g of fiber]. Whole grains, cereals, pulses, vegetables and fruits contain high dietary fiber. Diets higher in soluble fiber lead to total cholesterol reductions of 5% to 19% and low density lipoprotein cholesterol (LDL-C), reductions of 8% to 24%. Foods high in soluble fiber include oat bran, oatmeal, beans, rice, prune, barley, citrus fruits, strawberries, and apple pulp.

5. Five of more than 5 servings per day of fruits and vegetables are recommended, i.e., approximately 400–500 g/day including 3 vegetable and 2 fruit portions. [e.g., 100g (one katori) raw vegetables, e.g., cauliflower, broccoli, etc. = 20–30 kcal; 100 g fruit, e.g., one apple = 59 kcal]. Fruits should be eaten whole preferably with the skin whenever feasible instead of fruit juices.

Simple sugars like crystalline sugar, sucarase juice, sweetened carbonated beverages, fruit juices and sugar syrups should be avoided.

While deciding for carbohydrates, the glycemic index (GI) of foods should also be considered. GI is a measure of the effects of carbohydrates on blood sugar levels.

Carbohydrates that break down quickly during digestion and release glucose rapidly into the bloodstream, have a high GI, whereas carbohydrates that break down more slowly, releasing glucose more gradually into the bloodstream, have a low GI. Asians heavily and mainly from India, has shown the relevance of GI in the Indian context. foods having GI of 55 or less are considered to have low GI; between 56-69 as medium GI; and 70 or above as high GI. Along with GI, glycemic load (GL), of the food should also be considered, which depends on the amount of carbohydrate consumed. The glycemic load of a food is calculated by multiplying the GI and the amount of carbohydrate (in g) provided by a food and dividing the total by 100. For one serving of a food, a GL lower than 10 is considered low; between 11–19 is considered medium, and 20 or more is considered high. GI of some commonly consumed foods has been provided in Table 3.

Fats

Dietary fat includes both unsaturated and saturated fatty acids. The substitution of unsaturated fatty acids (including both polyunsaturated and monounsaturated) for saturated fatty acids leads to decreased LDL-C levels; slightly greater LDL-C reductions are observed with polyunsaturated fatty acids than with monounsaturated fatty acids. While high intake of polyunsaturated fatty acids may reduce high density lipoprotein cholesterol (HDL-C) and triglyceride levels, the substitution of monounsaturated fatty acids for saturated fatty acids has a minimal effect on HDL-C values and does not raise triglyceride levels. Dietary intake of trans fatty acids is associated with both increased LDL-C and decreased HDL-C levels. There is evidence from epidemiologic cohort studies, these effects indicate that diets high in trans fatty acids are associated with an increased risk of coronary artery disease (CAD); recent evidence indicates that, on a per calorie basis, risk with trans fatty acids is higher than with any other macro nutrients.

A high dietary intake of fat has been reported in Asian Indians. Fat consumption ranged from 13 to 59 g/d in different regions and states in India. Further, individuals in rural areas in India consume lower (17 %) energy intake from dietary fat as compared with urban residents (22%). Even though it has not been well investigated in any individuals, long-chain n-3 supplementation clearly lowers levels of serum triglycerides. Furthermore, these investigators have shown that South Asians had a higher proportion of total fatty acids as n-6 PUFA and a lower proportion of long-chain n-3 PUFA in plasma and cellular membrane phospholipids as compared with white Caucasians. It has been suggested that an imbalance in

in Asian Indians and play an important role in inducing insulin resistance. The presence of hyperinsulinenemia and dyslipidemia, along with obesity and an imbalanced dietary pattern, in Asian Indians is of concern and predisposes them to a high risk of T2DM, the metabolic syndrome, and coronary artery disease. Some previous studies also indicated that a high intake of energy, mainly constituting carbohydrates, was responsible for post-prandial hyperinsulinenemia and dyslipidemia in Asian Indians.

Dietary modification is a powerful non-pharmacological strategy for improving blood lipids. The goals of nutrition management are to maintain or improve quality of life, nutritional and physiological health, and to prevent and treat dyslipidemia and associated co-morbid conditions. In general, nutrition advice for people with dyslipidemia is the same as that for all Asian Indians. For individuals with dyslipidemia, attention to food portions and weight management combined with physical activity may help improve the condition. Nutrition in all forms of dyslipidemia management should be individualized.

Search strategy

The literature search has been carried out using the terms, obesity, dietary guidelines, dyslipidemia, nutrition, international dietary guidelines and developing countries, in the medical search database PubMed (National Library of Medicine, Bethesda, MD) from 1966 to June 2013. A manual search of the relevant quoted references was also carried out from the retrieved articles.

Data have also been taken from nutritional surveys in different developing countries and websites and published documents of the World Health Organization (WHO) and Food and Agricultural Organization (FAO). In total around 800 articles from 1966 to 2013 have been considered for these guidelines. We have mainly considered here the consensus dietary guidelines developed in 2011 for Asian Indians.

Energy

Energy intake should be limited to the amount of energy needed to maintain (or obtain) a healthy weight, i.e., a BMI 23 kg/m². It should be enough to support energy needs, allowing for a 5%–10% body-weight loss, if indicated. Energy requirement for any individual is calculated by multiplying the activity factor by ideal body weight of that individual (please see the Tables 1 & 2 below). For example, an Asian Indian man with medium built frame, 165 cm tall, should ideally weigh 62 kg and would require 1850 kcal/day to maintain healthy weight if he is sedentary.

Carbohydrates and Fiber

Recommendations

1. The daily carbohydrate intake should be approximately 50–60% of total energy intake. For example, in an 1800 and 2000 calorie diet, the carbohydrate intake for a sedentary to moderately active individual should be 225–270 g day and 250–300 g day, respectively.

2. The primary source of complex carbohydrates in the diet should be cereals (whole wheat, brown rice, etc.), millets [pearl millet (bajra), finger millet (ragi), great millet (kangaroo)], pulses [red gram (tur dal), green gram (sabut moong)], and legumes [soy, horse gram (kollu)]. Complex carbohydrates should be preferred over refined carbohydrates and its products, e.g., whole grain bread over white (maisa) bread.

3. Low GI carbohydrate foods, e.g., oats (jai), unpolished rice, parboiled rice, whole pulses, beans (fali) and legumes (sabut anaz), some whole foods like guava, apple, etc. should be preferred. High GI foods [refined flour, rice, white sugar, milk, etc.] and sugar [sugar, katori] should be avoided.

4. A quick and easy guide for use in the clinical setting is the Broca Index. This measurement relates weight in kilograms to height in centimeters, but makes no allowance for sex.

5. A minimum of four to five servings per day of fruits and vegetables are recommended, i.e., approximately 400–500 g/day including 3 vegetable and 2 fruit portions. [e.g., 100 g (one katori) raw vegetables, e.g., cabbage, broccoli, brinjal, etc. = 20–30 kcal, 100 g fruit, e.g., one apple = 59 kcal]. Fruits should be eaten whole preferably with the skin whenever feasible instead of fruit juices.

Table 1: Calculation of ideal body weight

<table>
<thead>
<tr>
<th>Build</th>
<th>Women</th>
<th>Men</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>100 lbg (45.2 kg) for first 5 ft (152 cm) height, plus 5 lb (2.3 kg) for each additional inch</td>
<td>100 lbg (48 kg) for first 5 ft (152 cm) height, plus 6 lb (2.7 kg) for each additional inch</td>
</tr>
<tr>
<td>Small</td>
<td>Subtract 10%</td>
<td>Subtract 10%</td>
</tr>
<tr>
<td>Large</td>
<td>Add 10%</td>
<td>Add 10%</td>
</tr>
</tbody>
</table>

Table 2: Calculation of energy requirement

<table>
<thead>
<tr>
<th>Activity</th>
<th>Energy requirement (kcal/kg BW/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>150</td>
</tr>
<tr>
<td>Sedentary</td>
<td>120</td>
</tr>
<tr>
<td>Moderate</td>
<td>100</td>
</tr>
<tr>
<td>Underweight</td>
<td>85</td>
</tr>
</tbody>
</table>

A high dietary intake of fat has been reported in Asian Indians. Fat consumption ranged from 13 to 59 g/d in different regions and states in India. Further, individuals in rural areas in India consume lower (17 %) energy intake from dietary fat as compared with urban residents (22%). Even though it has not been well investigated in any individuals, long-chain n-3 supplementation clearly lowers levels of serum triglycerides. Furthermore, these investigators have shown that South Asians had a higher proportion of total fatty acids as n-6 PUFA and a lower proportion of long-chain n-3 PUFA in plasma and cellular membrane phospholipids as compared with white Caucasians. It has been suggested that an imbalance in Carbohydrates that break down quickly during digestion and release glucose rapidly into the bloodstream have a high GI, whereas carbohydrates that break down more slowly, releasing glucose more gradually into the bloodstream, have a low GI. GI therefore and from India, has shown the relevance of GI in the Indian context. Foods having GI of 55 or less are considered to have low GI; between 56–69 as medium GI; and 70 or above as high GI. Along with GI, glycemic load (GL) of the food should also be considered, which depends on the amount of carbohydrate consumed. The glycemic load of a food is calculated by multiplying the GI and the amount of carbohydrate (in g) provided by a food and dividing the total by 100. For one serving of a food, a GL lower than 10 is considered low; between 11–19 is considered medium, and 20 or more is considered high. GI of some commonly consumed foods has been provided in Table 3.
Table 3: The average glycemic index of common foods derived from multiple studies by different laboratories

<table>
<thead>
<tr>
<th>GI</th>
<th>Legumes</th>
<th>Breakfast</th>
<th>GI</th>
<th>Sugars</th>
<th>Snack carbohydrate products and foods</th>
</tr>
</thead>
<tbody>
<tr>
<td>36 ± 2</td>
<td>43 ± 3</td>
<td>64 ± 4</td>
<td>15 ± 4</td>
<td>75 ± 2</td>
<td>39 ± 3</td>
</tr>
<tr>
<td>28 ± 9</td>
<td>24 ± 4</td>
<td>65 ± 5</td>
<td>65 ± 4</td>
<td>81 ± 6</td>
<td>28 ± 9</td>
</tr>
<tr>
<td>32 ± 5</td>
<td>35 ± 4</td>
<td>40 ± 3</td>
<td>41 ± 2</td>
<td>78 ± 9</td>
<td>15 ± 4</td>
</tr>
<tr>
<td>38 ± 8</td>
<td>59 ± 3</td>
<td>56 ± 3</td>
<td>56 ± 3</td>
<td>69 ± 2</td>
<td>40 ± 3</td>
</tr>
<tr>
<td>76 ± 4</td>
<td>87 ± 3</td>
<td>103 ± 3</td>
<td>103 ± 3</td>
<td>79 ± 3</td>
<td>87 ± 2</td>
</tr>
<tr>
<td>52 ± 4</td>
<td>62 ± 3</td>
<td>59 ± 8</td>
<td>59 ± 8</td>
<td>78 ± 9</td>
<td>74 ± 4</td>
</tr>
<tr>
<td>76 ± 4</td>
<td>75 ± 2</td>
<td>52 ± 4</td>
<td>52 ± 4</td>
<td>64 ± 7</td>
<td>64 ± 7</td>
</tr>
<tr>
<td>57 ± 2</td>
<td>62 ± 2</td>
<td>51 ± 5</td>
<td>51 ± 5</td>
<td>63 ± 6</td>
<td>63 ± 6</td>
</tr>
<tr>
<td>63 ± 5</td>
<td>70 ± 5</td>
<td>59 ± 9</td>
<td>59 ± 9</td>
<td>70 ± 5</td>
<td>70 ± 5</td>
</tr>
<tr>
<td>63 ± 5</td>
</tr>
<tr>
<td>59 ± 8</td>
</tr>
<tr>
<td>52 ± 4</td>
</tr>
<tr>
<td>49 ± 2</td>
</tr>
<tr>
<td>36 ± 2</td>
</tr>
<tr>
<td>40 ± 4</td>
</tr>
<tr>
<td>25 ± 2</td>
</tr>
<tr>
<td>39 ± 3</td>
</tr>
<tr>
<td>48 ± 5</td>
</tr>
<tr>
<td>43 ± 4</td>
</tr>
<tr>
<td>61 ± 3</td>
</tr>
</tbody>
</table>

Data are mean ±SEM. § Low GI varieties were also identified. ‡average of all available data

Dietary approach to management of dyslipidemia in Asian Indian subjects

- **recommendations:**
 - **Fats** should provide no more than 30% of total energy/day and SFAs should provide no more than 10% of total energy/day. For individuals having LDL cholesterol of ≥200 mg/dl, SFAs should be <7% of total energy/day.
 - **Essential PUFA** (linoleic acid (LA)) should provide 5–8% of total energy/day.
 - **α-linolenic acid (ALA)** should be 1–2% of total energy/day.
 - **Optimal ratio of LA/ALA** should be 5–10.
 - Long chain n-3 PUFA should be obtained from fish/walnuts/flaxseeds/canola oil, etc.
 - **cis MUFA** should provide 10–15% of total energy/day.
 - **TFAs** should be <1% of total energy/day.
 - **Cholesterol** intake should be limited to 200–300 mg/day.

The lower limit of fat should be adequate for the energy needs (15% of total energy), should prevent essential fatty acid deficiency (LA ≈ 3% of total energy; ALA ≈ 0.5% of total energy), and should facilitate optimal absorption of fat-soluble vitamins.

- **Food-based guidelines to ensure optimal fat quality in Asian Indian diets**
 1. Since complete dependence on just one vegetable oil does not ensure optimal intake of various fatty acids, use of 2 or more vegetable oils is recommended.
 2. The recommendation for oils are as follows:
 - **Preferred vegetable oils** along with ALA containing oils or vegetable oil containing high LA along with moderate or low LA containing oil(s) are listed below. However, the latter combination would ensure moderation in LA intake only and is recommended when other dietary components provide high ALA or fish is consumed. Improvement of n-3 PUFA nutritional status in Indian adults has been shown with two of these oil combinations (groundnut oil/sunflower oil and canola).a
 - Consumption of butter and ghee (clarified butter) should be kept to minimum.
 - Use of PHVO (Vanaspiti), as cooking medium should be strictly avoided.
 - SCoconut oil, palm kernel oil, palm oil and palm olein or their solid fractions should be substituted for PHVO in foods that require solid fats (bakery fats, shortening, etc.). These oils are high in SFAs but are TFA free.
 3. To ensure correct balance of fatty acids from dietary components other than visible fat, the following dietary guidelines are recommended:
 - Regular consumption of foods with high ALA content (wheat, pearl millet, pulses, green leafy vegetables, fenugreek, flaxseed, mustard seeds).
 - Partial substitution of visible fat and invisible fats from animal foods with whole foods such as pistachios and almonds.
 - Moderate in the use of animal foods containing high fat, SFAs and cholesterol.
 - For non-vegetarians, consumption of 100–200 g fish (4–6 pieces/week).
 - Minimizing consumption of premixed, ready-to-eat, fast foods, bakery foods and processed foods prepared in PHVO (hydrogenated fat) like savory (namkeen).d
 - Choose low fat dairy foods such as double toned milk (fats <1.5%) or curd prepared from such milk. The preference of low fat dairy foods would also reduce prominent TFAs.

Complete dependence on just one vegetable oil does not ensure optimal intake of various fatty acids. Combination/blend of 2 or more vegetable oils (1:1) is recommended.

Some recommended oil combinations are:

- Groundnut/sesame/rice bran/cotton seed + Mustard/Canola/Soyabean
- Safflower/sunflower + mustard/ olive/groundnut/ Rice bran

To limit the intake of trans-fats avoid the use of partially hydrogenated vegetable fat (vanaspiti/margarine) for cooking/frying/baking.
Table 3: The average glycemic index of common foods derived from multiple studies by different laboratories

<table>
<thead>
<tr>
<th>High-carbohydrate foods</th>
<th>GI</th>
<th>Vegetables</th>
<th>GI</th>
<th>Fruits and fruit products</th>
<th>GI</th>
<th>Snacks and other alternatives</th>
<th>GI</th>
<th>Dairy products and alternatives</th>
<th>GI</th>
<th>Sweets and sugars</th>
<th>GI</th>
</tr>
</thead>
<tbody>
<tr>
<td>White wheat bread§</td>
<td>78 ± 4</td>
<td>Potato, boiled</td>
<td>87 ± 3</td>
<td>Potato, cinnamon toast</td>
<td>76 ± 4</td>
<td>Kidney beans</td>
<td>66 ± 5</td>
<td>Milk, full fat</td>
<td>65 ± 4</td>
<td>Fructose</td>
<td>78 ± 4</td>
</tr>
<tr>
<td>Whole wheat bread</td>
<td>74 ± 2</td>
<td>Potato, boiled</td>
<td>87 ± 3</td>
<td>Potato, cinnamon toast</td>
<td>76 ± 4</td>
<td>Kidney beans</td>
<td>66 ± 5</td>
<td>Milk, full fat</td>
<td>65 ± 4</td>
<td>Fructose</td>
<td>78 ± 4</td>
</tr>
<tr>
<td>Wheat roti</td>
<td>68 ± 4</td>
<td>Potato, boiled</td>
<td>87 ± 3</td>
<td>Potato, cinnamon toast</td>
<td>76 ± 4</td>
<td>Kidney beans</td>
<td>66 ± 5</td>
<td>Milk, full fat</td>
<td>65 ± 4</td>
<td>Fructose</td>
<td>78 ± 4</td>
</tr>
<tr>
<td>Chapatti</td>
<td>52 ± 4</td>
<td>Rice cakes, boiled</td>
<td>63 ± 6</td>
<td>Rice cakes, boiled</td>
<td>63 ± 6</td>
<td>Soy milk</td>
<td>34 ± 4</td>
<td>Rice milk</td>
<td>34 ± 4</td>
<td>Glucose</td>
<td>68 ± 4</td>
</tr>
<tr>
<td>Corn bread</td>
<td>40 ± 4</td>
<td>Milk, full fat</td>
<td>63 ± 6</td>
<td>Milk, full fat</td>
<td>63 ± 6</td>
<td>Soy milk</td>
<td>34 ± 4</td>
<td>Rice milk</td>
<td>34 ± 4</td>
<td>Glucose</td>
<td>68 ± 4</td>
</tr>
<tr>
<td>Whole wheat toast</td>
<td>60 ± 4</td>
<td>Milk, full fat</td>
<td>63 ± 6</td>
<td>Milk, full fat</td>
<td>63 ± 6</td>
<td>Soy milk</td>
<td>34 ± 4</td>
<td>Rice milk</td>
<td>34 ± 4</td>
<td>Glucose</td>
<td>68 ± 4</td>
</tr>
<tr>
<td>Brown rice, boiled</td>
<td>49 ± 3</td>
<td>Banana, raw‡</td>
<td>40 ± 4</td>
</tr>
<tr>
<td>Rice noodles‡</td>
<td>57 ± 2</td>
<td>Banana, raw‡</td>
<td>40 ± 4</td>
</tr>
</tbody>
</table>

Data are mean ±SEM. § Low GI varieties were also identified. ‡average of all available data

Dietary approach to management of dyslipidemia in Asian Indian subjects

1. Dietary n-6 and n-3 PUFA may be important for the development of insulin resistance and dyslipidemia in South Asians.

2. Essential PUFAs [linoleic acid (LA)] should provide 5–8% of total energy/day.

3. a-linolenic acid (ALA) should be 1–2% of total energy/day.

4. Optimal ratio of LA:ALA should be 5–10.

5. Long chain n-3 PUFAs should be obtained from fish/walnuts/flaxseeds/canola oil, etc.

6. Cit MUFAs should provide 10–15% of total energy/day.

7. TFAs should be <1% of total energy/day.

8. Cholesterol intake should be limited to 200–300 mg/day.

9. The lower limit of fat should be adequate for the energy needs (15% of total energy), should prevent essential fatty acid deficiency (LA ~ 3% of total energy; ALA ~ 0.5% of total energy), and should facilitate optimal absorption of fat-soluble vitamins.

Food-based guidelines to ensure optimal fat quality in Asian Indian diets

1. Since complete dependence on just one vegetable oil does not ensure optimal intake of various fatty acids, use of 2 or more vegetable oils is recommended.

2. The recommendation for oils are as follows:

 - a. Preferred vegetable oils (s) along with ALA containing oil(s) or vegetable oil containing high LA along with moderate or low LA containing oil(s) are listed below. However, the latter combination would ensure moderation in LA intake only and is recommended when other dietary components provide high LA or is fish consumed.

 - b. Should be kept to minimum.

 - c. Use of PHVO (Vanaspati), as cooking medium should be strictly avoided.

 - d. Substituted for PHVO in foods that require solid fats (bakery fats, shortening, etc.). These oils are high in SFAs but are TFA free.

3. To ensure correct balance of fatty acids from dietary components other than visible fat, the following dietary guidelines are recommended:

 - a. Regular consumption of foods with high ALA content (wheat, pearl millet, pulses, green leafy vegetables, fenugreek, flaxseed, mustard seeds).

 - b. Partial substitution of visible fat and invisible fats from animal foods with whole nuts such as pistachios and almonds.

 - c. Moderate in the use of animal foods containing high fat, SFAs and cholesterol.

 - i. For non-vegetarians, consumption of 100–200 g fish (4–6 pieces) per week.

 - ii. Minimizing consumption of premixed, ready-to-eat, fast foods, bakery foods and processed foods prepared in PHVO (hydrogenated fat) like savory (namkeen).

 - d. Choose low fat dairy foods such as double toned milk (fats <1.5%) or curd prepared from such milk. The preference of low fat dairy foods would also reduce TFA.

Complete dependence on just one vegetable oil does not ensure optimal intake of various fatty acids.

Combination/blend of 2 or more vegetable oils (1:1) is recommended.

Some recommended oil combinations are:

- Groundnut/soyabean/rice bran/cotton seed + Mustard (Canola/Soyabean)
- Sunflower/sunflower + mustard or olive/Groundnut/Rice bran

To limit the intake of trans-fats avoid the use of partially hydrogenated vegetable fat (vanaspati/margarine) for cooking/frying/baking.

J. Preventive Cardiology ■ Vol. 3 ■ No. 4 ■ May 2014
While low-fat diets are generally recommended, it is important to recognize that decreasing dietary fat intake may lead to increased carbohydrate consumption and subsequent weight gain. Patients at risk for the insulin resistance syndrome are advised to avoid excessive carbohydrate intake and to consume diets that include relatively more unsaturated fats. A diet high in carbohydrates (>60% of total energy) will increase triglycerides, while a diet that replaces saturated fatty acids with monounsaturated fatty acids will not.

Proteins

1. Protein intake should be based on body weight. This should be 1 g/kg/day, considering the quality of protein intake.

2. In conjunction with energy intake, the protein intake should provide 10-15% of the total calories/day in sedentary to moderately active individuals.

3. Recommended protein sources:
 b. Vegetarian: Soya, pulses, whole grains (channa, ragi), green gram, etc.), milk and low fat dairy products.

4. Reading of food labels to determine sodium content of foods is important.

5. Artificial sweeteners could be used in moderation.

 - Sucralose (Splenda) has been approved by FDA for general use.
 - Saccharin (Sweet ‘N’ Low, Sweet Twin) is approved by FDA under GRAS (Generally Recognized as Safe) status.
 - Acesulfame-K (Sunset) is approved by FDA to be used in limited quantity due to low price, good shelf life and heat stability.
 - Aspartame (Equal, Sweet One) is approved for use in beverages, dairy products, pharmaceutical products, chewing gum etc.
 - Xylitol, Mannitol, Maltitol, etc. have been approved by FDA under GRAS (Generally Recognized as Safe) status.

6. Alcohol

 - Alcohol should not be consumed by individuals with diabetes.
 - Individuals taking small quantity of alcohol should not be discouraged.
 - Taking small quantity of alcohol should not have alcohol; however, individuals should provide 10–15% of the total calories/day in sedentary to moderately active individuals.

7. Salt intake should be less than 5 g of sodium chloride (or about 2 g sodium/day).

 - Addition of extra salt at the dining table should be avoided.

8. Dietary intake of sodium from all sources (pickles, chutneys, namkeens, pappads bakery items, potato chips, popcorn, salty biscuits, preserved meat products, other preserved and preserved foods, soups, cheese, fast foods) should be limited. Avoid processed foods that have high salt content.

9. Reading of food labels to determine sodium content of the commercial foods should be encouraged. Sodium, in such foods may be added in such foods in the form of sodium benzoate, monosodium glutamate, baking powder, and baking soda.

10. Sugar and artificial sweeteners

 - Free sugars should be less than 10% of total calories/day; and includes all added sugars and sugars present in honey, syrups and fruit juices.

 - Alternatives to sweetened beverages can be water, skimmed buttermilk, tender coconut water, low fat milk.

 - Indian sweets, halwa (a gelatinous sweet dish made from grain flour, ghee, sugar and nuts), kheer (a sweet dish made from boiling rice with milk, sugar, carrots, sago, sweet rice, and milk puddings, ice creams, sweetened biscuits, cakes, pastries and baked goods are high in added sugars and should be restricted.

 - Encourage reading of food labels to determine sugar content. Some of the names in the ingredient lists include: brown sugar, corn syrup, dextrose, honey, malt syrup, sugar, molasses and sucrose.

11. Long term studies are required to evaluate the effect of these food items and appropriate dosage for Asian Indians.

 - In comparison to previous guidelines, the Consensus Group recommends a reduction in the intake of carbohydrates (50-60% of total energy/day), preferential intake of complex carbohydrates and low GI foods, higher intake of fiber (25-40 g/day), lower intake of saturated fats (less than 10% of total energy/day), higher intake of lean protein sources (10-15% of total energy/day), lower intake of salt (5 g/day), and restricted intake of sugar (less than 10% of total energy/day). Although these guidelines are applicable to Asian Indians in any geographical setting, they are particularly applicable to those residing in urban and in semi-urban areas. Proper application of these guidelines will help curb the rising “epidemics” of the metabolic syndrome, T2DM, dyslipidemia, hypertension and CVD in Asian Indians.

References

Conclusion

While low-fat diets are generally recommended, it is important to recognize that decreasing dietary fat intake may lead to increased carbohydrate consumption and subsequent weight gain. Patients at risk for the insulin resistance syndrome are advised to avoid excessive carbohydrate intake and to consume diets that include relatively more unsaturated fats. A diet high in carbohydrates (>60% of total energy) will increase triglycerides, while a diet that replaces saturated fatty acids with monounsaturated fatty acids will not.

Lipid lowering foods

There is also a need to identify and include foods which have been reported to have lipid lowering properties.

Following are some of the food items that have been documented to have lipid lowering effect:

1. Oats
2. Nuts
3. Psyllium husk
4. Cinnamon
5. Flaxseeds
6. Fenugreek
7. Soy
8. Amla
9. Garlic
10. Finger Millet
11. Terminalia arjuna

Long term studies are required to evaluate the effect of these food items and appropriate dosage for Asian Indians.
While low-fat diets are generally recommended, it is important to recognize that decreases in dietary fat intake may lead to increased carbohydrate consumption and subsequent weight gain.11,12 Patients at risk for the insulin resistance syndrome are advised to avoid excesses of carbohydrates and to consume diet that includes relatively more unsaturated fats.13 A diet high in carbohydrates (>60% of total energy) will increase triglycerides, while a diet that replaces saturated fatty acids with monounsaturated fatty acids would not.14

Proteins

1. Protein intake should be based on body weight. This should be 1 g/kg/day, considering the quality of protein in a usual Indian vegetarian diet.
2. In conjunction with energy intake, the protein intake should provide 10–15% of the total caloric/day, in sedentary to moderately active individuals.
3. Recommended protein sources:
 - b. Vegetarian: Soy, pulses, whole grains (channa, ragi), green gram, etc., milk and low-fat dairy products

Salt

1. Salt intake should be less than 5 g of sodium chloride (or about 2 g sodium/day).15
2. Addition of extra salt at the dining table should be avoided.
3. Dietary intake of sodium from all sources (pickles, cheeses, pre-prepared and preserved foods, soups, cheese, fast foods) should be limited. Avoid processed foods that have high salt content.

Sugar and artificial sweeteners

1. Free sugars should be less than 10% of total calories/day. AVOID all added sugars and sugars present in honey, syrups and fruit juices.16
2. Alternatives to sweetened beverages can be water, skimmed buttermilk, tender coconut water, low fat milk.
3. Indian sweets, halva (a gelatinous sweet dish made from grain flour, ghee, sugar and nuts), kheer (a sweet dish made from boiling rice with milk, sugar, cardamom, saffron, and nuts) puddings, ice creams, sweetened biscuits, cakes, pastries and baked goods are high in added sugars and should be restricted.
4. Encourage reading of food labels to determine sugar content. Some of the names in the ingredients list for the presence of added sugars include: brown sugar, corn syrup, dextrose, honey, malt syrup, sugar, molasses and sucrose.
5. Artificial sweeteners can be used in moderation. However, these do not contain any beneficial nutrients and long-term health benefit, if any, is not clear in non-diabetic individuals. The Food and Drug Administration (FDA) has approved 5 artificial sweeteners; saccharin (Sweet ‘N Low, Sweet Twin, Necta Sweet), aspartame (Equal, Sweet One, Sugar free), saccharin-S, neotame (both are used in beverages, dairy products, pharmaceutical products, chewing gum etc.), and sucralose (Splenda, Zero, Sugar free natural) as safe.17,18,19,20

Lipid lowering foods

There is also a need to identify and include foods which have been reported to have lipid lowering properties. Following are some of the food items that have been documented to have lipid lowering effect:

1. Oats21,22
2. Nuts23
3. Psyllium husk24,25
4. Cinnamon26
5. Flaxseeds27
6. Fenugreek28
7. Soy29
8. Amla30
9. Garlic31
10. Finger Millet32
11. Terminalia arjuna32

Long term studies are required to evaluate the effect of these food items and appropriate dosage for Asians.

Conclusion

In comparison to previous guidelines, the Consensus Group recommends a reduction in the intake of saturated fat (50–60% of total energy/day), preferential intake of complex carbohydrates and low GI foods, higher intake of fiber (25–40 g/day), intake of fiber (25–40 g/day), lower intake of saturated fats (<10% of total energy/day), higher intake of polyunsaturated fatty acids/day (LA 5–8% and ALA 1–2 % of total energy, cis MUFA and 10–15%, TFA -1% of total energy), slightly higher protein intake (10–15% of total energy/day), lower intake of salt (5 g/day), and restricted intake of sugar (less than 10% of total energy/day). Although these guidelines are applicable to Asian Indians in any geographical setting, they are particularly applicable to those residing in urban and in semi-urban areas. Proper application of these guidelines will help curb the rising “epidemics” of the metabolic syndrome, T2DM, dyslipidemia, hypertension and CVD in Asian Indians.

References

Food and Drug Administration. Food labeling: Health claims:

35. Williams SR. Nutrition and Diet Therapy. 6th edition. St. Louis:

